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Abstract
Critical points of a scalar quantitiy are either extremal points or saddle points.
The character of the critical points is determined by the sign distribution of
the eigenvalues of the Hessian matrix. For a two-dimensional homogeneous
and isotropic random function, topological arguments are sufficient to show
that all possible sign combinations are equidistributed or with other words, the
density of the saddle points and extrema agree. This argument breaks down in
three dimensions. All ratios of the densities of saddle points and extrema larger
than one are possible. For a homogeneous Gaussian random field one finds no
longer an equidistribution of signs, saddle points are slightly more frequent.

PACS numbers: 02.10.Yn, 02.40.Re, 47.54.+r, 47.27.Gs

1. Introduction

Often turbulent phenomena are accompanied by random fluctuations of some scalar quantity.
One may think of the density, temperature or optical refraction index for compressible flows,
concentrations in the case of mixtures or reaction or combustion rates in the case of chemically
active substances. Important properties of these fields are their critical points, i.e. those points
where their gradient vanishes. They give rise to a subdivision of these fields into ‘dissipation
elements’ [1] very similar to the partition of the velocity field into ‘eddies’ generated from
the stagnation points [2, 3]. One should also mention [4] where the routes to the generation
of critical points out of simpler flows are studied. In addition to their importance for the
characterization of the field, they are often also of direct physical significance. Let us discuss
the situation in more detail in case of a temperature field. There the heat flux is directed
towards lower temperatures, i.e. the heat flux lines end in a temperature minimum. Each
temperature minimum is surrounded by a cell consisting of points with heat flux directed
towards the minimum. It does of course not mean that the actual heat transport in the turbulent
flow is appropriately described by this cell structure as the cells change from time to time
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and there usually is a significant contribution from convection to the heat transport. The cell
structure is more suited to visualize the temperature field. As the cells are associated with
temperature minima the distribution of the minima is of special interest. The distribution of
the minima depends of course on the random properties of the turbulence and is therefore
difficult to obtain. Some hints can however be obtained if one assumes Gaussian random
fields, an assumption which is often made in turbulence studies. The properties of the critical
points depend on the Hessian matrix of the scalar field. The Hessian of isotropic homogeneous
random functions has been studied for two-dimensional fields by Longuet-Higgins [5] in a
paper on light reflection at a random surface and for three-dimensional fields by Halperin and
Lax [6] in a paper on impurities in semiconductors. In these early works the method of Rice
[7] to represent a random function as a superposition of trigonometric functions is used. This
method assumes implicitly homogeneity of the random function, its role was therefore not
considered explicitly in these works. More recently the Hessians of large dimensions were
studied in the context of random matrix theory [8] by Fyodorov [9, 10]. The relation of the
Hessians to the Gaussian orthogonal ensemble (GOE) was clearly formulated in this work
and it was shown that one can introduce a normally distributed auxiliary variable t such that
the ensemble of Hessians of homogeneous isotropic random functions is obtained from GOE
by averaging over this variable. Through this approach it is possible to apply results from
GOE studies at the cost of one extra average (i.e. integration). Fyodorov shows how this can
effectively be done.

The topic which is of high interest to us is the distribution of extrema in the critical points.
The type of the critical point is determined by the sign distribution of the eigenvalues of the
Hessian. Usually the number of negative eigenvalues is called the index of the matrix. Methods
of functional integration have been used by Bray and Dean [11] to determine the asymptotic
distribution of the index and Fyodorov, Sommers and Williams [12] have determined the
asymptotic value of the minima i.e. the critical points of index zero. Comparing their
equations (31) and (23) one finds that the probability of a critical point to be a minimum
is asymptotically given by exp(-N) for N-dimensional homogeneous random functions.

The situation is completelely different for two-dimensional random functions. There it is
well known that it follows from topological reasons that the densities of the extrema and of the
saddle points agree. This is e.g. the basis of the Poincare-index and of the Brouwer-degree.
[13, 14] For random functions with even probability distribution, e.g. in the Gaussian case one
has one half of the critical points with index 1 and a quarter with index zero or two. The four
different sign combinations of the eigenvalues are equidistributed. On the other hand the result
of Fyodorov et al shows that the fraction of critical points which are minima, namely exp(-N),
is for large matrices well below the fraction of 2−N to be expected for an equidistribution of
signs.

Our interest is the three-dimensional case. There the strong topological restrictions from
the two-dimensional case no longer apply. From Morse theory [15] one can conclude that the
density of the extrema cannot be smaller than the number of saddle points, but equality, as
in two dimensions is no longer true. In an appendix, we describe functions having various
fractions of minima. So we consider Gaussian random functions. Although we could use
results of Fyodorov for the critical point density, the situation is more complicated for the
density of minima. So we stay with the ensemble of Hessians and use the methods developped
in random matrix theory as far as they apply and make use of the additional symmetry which
follows from the homogeneity of the random functions. For the three-dimensional case one
can then evaluate the remaining integrals by fairly elementary means and obtains for the
fraction of minima under all critical points the value 1/4 − 3

√
6/58 = 0.1233 slightly less

than 1/8 to be expected for equidistribution of signs.
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2. Basic relations

To obtain the density of the critical points of a scalar random function C(x), i.e. points in
N-dimensional x-space where the gradient g = ∇C vanishes one observes that each critical
point gives a contribution 1/|det(H(x))| to the integral over δ(g), where δ(g) denotes the
Dirac δ-function. Here H(x) denotes the Jacobian matrix of g, i.e. the Hessian matrix of the
second derivatives of C and det(H) its determinant. Then the density of the critical points ncr

can be obtained as

ncr = 〈|det(H)|δ(g)〉 with g =
(

∂C

∂xi

)
, H =

(
∂2C

∂xi∂xk

)
, (1)

where 〈a〉 denotes the average of a. This is the so-called Kac-Rice formula. Similarly the
density nmi of the minima of C can be obtained from

nmi = 〈χmi(H)| det(H)|δ(g)〉. (2)

Here χmi(H) denotes the characteristic function of the minima which is one if all eigenvalues
of H are positive and otherwise zero.

From the homogeneity condition one obtains with integration by parts

〈HiiHkk〉 = 〈
H 2

ik

〉
. (3)

This is in marked contrast random matrix theory where matrices K from the GOE fufill

〈KiiKkk〉GOE = 2δik

〈
K2

ik

〉
GOE. (4)

The isotropy of C(x) lead with (3) to the probability distribution function (pdf) [9]

P = c exp

(
−αg2 − β

(
Tr H2 − 1

N + 2
(Tr H)2

))
with α = 1

2
〈
g2

1

〉 , β = 1

2
〈
H 2

12

〉 .
(5)

where Tr denotes the trace of the matrix and c is a normalization constant. Obviously all
off-diagonal elements are independant and have the same normal distribution, exactly as for
GOE. Differences occur only in the diagonal elements. Therefore Fyodorov introduced an
additional normally distributed variable t (averages over t are denoted by a subscript NO) and
wrote with K from GOE

Hik = Kik + tδik. (6)

To determine the mean square of t one averages over GOE and NO to obtain for i �= k〈
H 2

ik

〉 = 〈HiiHkk〉 = 〈(Kii + t)(Kkk + t)〉GOE,NO = 〈t2〉NO (7)

Alternatively it is possible to assume t = χ Tr K and one obtains for i �= k

〈HiiHkk〉 = 〈(Kii + χ Tr K)(Kkk + χ Tr K)〉GOE

= 2χ
〈
K2

ii

〉
GOE + χ2N

〈
K2

ii

〉
GOE = 〈Hik〉2 = 〈

K2
ik

〉
GOE

and therefore

2Nχ2 + 4χ − 1 = 0.

This representation is useful for Monte Carlo calculations.
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3. Three-dimensional matrices

From (5) one notices that g and H are statistically independent. So the density of the critical
points and of the maxima can be written as a product of two factors n = n(1)n(2), where the
first factor depends only on the average values of g and the second of those of H. The first
factor is easily determined

n(1) =
∫

δ(g) exp(−αg2) d3g∫
exp(−αg2) d3g

=
√

α

π

3

(8)

It remains to find the second factor.
Let us now restrict ourselves to three dimensions, N = 3. The pdf for the Hessian is then

given by

P = c exp(−β(Tr H2 − (Tr H)2/5)) with β = 1

2
〈
H 2

12

〉 . (9)

We are interested in averages depending only on the eigenvalues of H. Then it is common
[8] to introduce the eigenvalues E1, E2, E3 as new variables and to average over the remaining
variables. As the ordering of the eigenvalues is arbitrary, we assume

E1 � E2 � E3. (10)

Then it is shown in [8] that the pdf in the eigenvalue space Pe is given by

Pe = c exp(−βeT Ae)�(e) with Aik = 1
5 (5δik − 1),

where �(e) = (E3 − E2)(E2 − E1)(E3 − E1) and e is a column vector of the eigenvalues.
Now we introduce new variables y1, y2, y3 through

e = B

⎛
⎝y1

y2

y3

⎞
⎠ = 1√

6

⎛
⎜⎝−2 0

√
5

1 −√
3

√
5

1
√

3
√

5

⎞
⎟⎠ y. (11)

One verifies easily that BT AB is the identity matrix. Therefore the pdf reads in the new
variables

Pe = c exp(−βyT y)�(By).

With spherical polar coordinates

y1 = r cos ϕ sin ϑ, y2 = r sin ϕ sin ϑ, y3 = r cos ϑ

one obtains �(e) = r3�3(ϑ, ϕ) = r3 sin3 ϑ sin(3ϕ)/
√

2. As we are interested in the average
of homogeneous quantities 
(e) = rn
n(ϑ, ϕ) only, we can write

〈
〉 = c√
2

∫
rn+5 exp(−βr2)
n(ϑ, ϕ) sin(3ϕ) sin4 ϑ dr dϕ dϑ.

Now we can perform the r-integration and obtain

〈
〉 = c�(3 + n/2)√
2β3+n/2

∫

n(ϑ, ϕ) sin(3ϕ) sin4 ϑ dϕ dϑ, (12)

where � denotes the �-function.
Now we have reduced the integral from one in the 6-dimensional space of the Hik to an

integral over a 2-dimensional sphere. One finds easily, that E1 = E2 corresponds to ϕ = π
3

and E2 = E3 to ϕ = 0. Then, because of the restriction (10) the integration is not over the
whole sphere but only over the segment

0 � ϕ � π/3, 0 � ϑ � π. (13)

4
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E  = E2 3

E  = E1 2

1E  < 0

3E  < 0

2E  < 0

Figure 1. The unit sphere in y-space. Bright is the physically significant region (10). Shown is also
the partition into regions of only positive eigenvalues (topmost region), one negative eigenvalue
(E1 < 0), two negative eigenvalues (E2 < 0) and all eigenvalues negative.

The other regions of the sphere correspond to a different ordering of the eigenvalues.
As the enumeration of the eigenvalues is usually arbitrary, one can as well integrate over the
whole sphere and divide the result by the number of different orderings, namely six. The
configuration is shown in figure 1 where we additionally show the cross section of the sphere
with the planes E1 = 0, E2 = 0, and E3 = 0. As these planes, as well as E1 = E2 and
E3 = E2, all pass through the origin, the cross sections are all great circles. The segment (10)
is then divided into four spherical triangles. The topmost is bounded in addition to (13)
by E1 = 0, it corresponds therefore to eigenvalues which are all positive, the next triangle
is bounded by E1 = 0 and E2 = 0, corresponds therefore to one negative eigenvalue, the
next one to two negative eigenvalues and the last one to eigenvalues which are all negative.
One also notices that the segment and the pdf is not changed if the signs of the eigenvalues
and their numeration is reversed. The four spherical triangles are however interchanged.
Therefore the first and the fourth and the second and the third lead often to contributions of the
same size.

4. Critical points

As a first step, we determine the normalization constant c of the pdf. As usual, it can be
determined from the average of one which is one. As one is a homogeneous function of degree
n = 0 one has from (12)

1 = c�(3)√
2β3

∫ π/3

0
sin(3ϕ) dϕ

∫ π

0
sin4 ϑ dϑ = cπ

2
√

2β3
. (14)

5
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Now we determine the second factor n(2) for the spatial density of the minima. As the
determinant of H is a homogeneous function of third degree we obtain from (12)

n(2)
mi = 〈χmi(H) det(H)〉 = c�(9/2)√

2β9/2

∫
det(H) sin(3ϕ) sin4 ϑ dϕ dϑ (15)

which is to be evaluated over the unit sphere in y-space where all eigenvalues are positive, i.e.
the topmost triangle in figure 1. With

det(H) = r3
3(ϑ, ϕ) = r3

(√
5 cos ϑ

6
√

6
(5 − 8 sin2 ϑ) − sin3 ϑ cos 3ϕ

3
√

6

)
,

and the indefinite integral

I =
∫


3(ϑ, ϕ)�3(ϑ, ϕ) sin ϑ dϑ = I1(ϑ, ϕ) + I2(ϑ, ϕ),

I1(ϑ, ϕ) =
√

15 sin 3ϕ

9

(
sin5 ϑ

4
− 2 sin7 ϑ

7

)

I2(ϑ, ϕ) =
√

3 sin 6ϕ cos ϑ

6

(
8

105
+

4 sin2 ϑ

105
+

sin4 ϑ

35
+

sin6 ϑ

42

)
(16)

we obtain for the integral Jmi over the topmost spherical triangle

Jmi =
∫ π/3

0
(I (ϑ1(ϕ), ϕ) − I (0, ϕ)) dϕ =

∫ π/3

0
(I (ϑ1(ϕ), ϕ)) dϕ (17)

as the integral at ϑ = 0 vanishes obviously and where ϑ1(ϕ) describes the great circle E1 = 0,
i.e. from (11)

sin ϑ1 =
√

5√
5 + 4 cos2 ϕ

, cos ϑ1 = 2 cos ϕ√
5 + 4 cos2 ϕ

.

Now the indefinite integrals J1(ϕ) and J2(ϕ) of I1 and I2 over E1 = 0 can again be determined
easily, and one obtains

J1(φ) =
√

3 cos(ϕ)

189
√

5 + 4 cos2(ϕ)
5

(
−15

4
+ 8 cos2(ϕ) − 356 cos4(ϕ)

25

)

J2(φ) = −
√

3 cos3(ϕ)

9
√

5 + 4 cos2(ϕ)
5

(
1 − 48 cos2(ϕ)

25
− 816 cos4(ϕ)

875
(18)

+
3328 cos6(ϕ)

2625
+

2048 cos8(ϕ)

2625

)
.

With these indefinite integrals we get for J = J1 + J2

J
(π

3

)
= −

√
2

210
, J (0) = −29

√
3

3780
, Jmi = 1

210

(
29

18

√
3 −

√
2

)
(19)

and then also n(2)
mi from (15) where we have used the nomalization (14)

n(2)
mi = 1

16
√

πβ3/2

(
29

18

√
3 −

√
2

)
and these give finally

nmi = 1

16π2

(
α

β

)3/2 (
29

18

√
3 −

√
2

)
= 0.008 72

(
α

β

)3/2

(20)

for the spatial density of the maxima.

6
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To determine the probability of the saddle points, we have to integrate over the spherical
triangle between the great circles E1 = 0, E2 = 0 and E2 = E3. The first one is given by
ϑ = ϑ1(ϕ) and let the second be given by ϑ = ϑ2(ϕ). From (11) we obtain

sin ϑ2 =
√

5√
5 + 4 cos2(ϕ + π/3)

, cos ϑ2 = − 2 cos(ϕ + π/3)√
5 + 4 cos2(ϕ + π/3)

.

Then the integral over this triangle Jsa can be written as

Jsa =
∫ π/3

0
(I (ϑ1, ϕ) − I (ϑ2, ϕ)) dϕ = Jmi −

∫ π/3

0
(I (ϑ2, ϕ)) dϕ (21)

where we have taken into account, that the integrand is negative between E1 = 0 and E2 = 0.
Now ϕ = ϕ̃ + 2π/3 gives ϑ2(ϕ) = ϑ1(ϕ̃) and I (ϑ2(ϕ), ϕ) = I (ϑ1(ϕ̃), ϕ̃) and therefore∫ π/3

0
I (ϑ2, ϕ) dϕ =

∫ −π/3

−2π/3
I (ϑ1(ϕ̃), ϕ̃) dϕ̃ = −

∫ 2π/3

π/3
I (ϑ1, ϕ̃) dϕ̃ = 2J

(π

3

)
.

We then obtain from (21) and (19)

Jsa = 1

210

(
29

18

√
3 +

√
2

)
and for the ratio of the density of minima to that of critical points

Jmi

2Jmi + 2Jsa
= 1

4
− 3

√
6

58
= 0.1233.

5. Conclusion

The distribution of critical points of a two-dimensional function is severely restricted by
topological considerations. There the density of extremal points and saddle points agree, i.e.
there is an equidistriburion of signs of the eigenvalues of the Hessian. For three-dimensional
functions these topological restrictions no longer apply and this ratio depends on the type of
the function. For a Gaussian homogeneous and isotropic random function slghtly less than
1/8 of all critical points are minima. A comparison with results from computational fluid
dynamics seems interesting.
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Appendix. Example functions

A simple function with many critical points is given by

cos πx1 + cos πx2 + cos πx3.

Its critical points are the lattice points (x1, x2, x3) = (n1, n2, n3) with integer n1, n2, n3.
Maxima occur when the integers are all even, minima when they are all odd. All other critical
points are saddle points. Obviously all sign combinations are equidistributed. Under eight
critical points one finds one maximum one minimum and 6 saddle points. We now indicate

7
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how functions with arbitrary ratios not smaller than one of densities of saddle points to extrema
can be found. Actually one can conclude from theorem 3.4 in the Morse theory chapter of [15]
that this restriction on the critical points is a necessary one. There are no functions having a
density of extrema larger than the density of saddle points.

The purpose of this appendix is to describe functions with various ratios of saddle point
density to extrema density. As a first step, we describe that it is under certain conditions
possible to combine two functions to a new function which has exactly the critical points of
both combined. To be specific, let F(x) and 
(x) be two smooth functions with F(x0) = 0
and 
(∞) = 0 and furthermore

|∇F(x)| � M|x − x0| and |∇
(x)| � M

|x|2 ,

then with some nonvanishing vector V the functions

f = a + V · (x − x0) + F(x) and φ = V · x + 
(x)

are such that f has no critical points in a neighbourhood of x0 and φ has only a finite number
of critical points. Let α(r) be a smooth non-increasing function which is one for r � 1 and
vanishes for r � 2. Then one can define with some positive ε

g = α

(
x − x0

ε

) (
a + ε2φ

(
x − x0

ε2

))
+

(
1 − α

(
x − x0

ε

))
f (x)

= a + V · (x − x0) + α

(
x − x0

ε

) (
ε2


(
x − x0

ε2

)
− F(x)

)
+ F(x).

It is obvious that g has for sufficiently small ε in |x − x0| � ε just the critical points of φ

and for |x − x0| � 2ε just those of f . With standard estimates one can verify, that for small
enough ε there are no critical points in the transition region ε � |x − x0| � 2ε.

Now we describe functions having an arbitrary non-zero even number of saddle points
and just two extrema. These functions can then be inserted in arbitrary numbers in some given
smooth function and one can use them to generate functions having in any given domain an
arbitrary rational ratio of saddle points to extrema above one. Then it is also possible to build
functions with a similar density ratio. These functions are necessarily three-dimensional. We
nevertheless begin with a function of two variables r, z, namely

f (r, z) = z + a

(
1

1 + b(r2 + (z + 1)2)
− 1

1 + b(r2 + (z − 1)2)

)
with positive a and b. Later on we will think of r and z as cylindrical coordinates in a
three-dimensional space. The discussion of this function is elementary, so we just describe the
results. For small values of a one has only a small perturbation of the linear function z without
any critical points. For somewhat larger a there are four critical points, one maximum, one
minimum and two saddle points, all situated on the z-axis r = 0. For even larger values of a,
exactly for

4a >

(
b +

1

b

)2

the extrema remain on the z-axis while the saddle points move on the r-axis to r = ±rs with
some positive rs and this is the case which is of interest to us. In three-dimensional space
with cylindrical coordinates this function has however a non-generic critical circle r = rs , so
we would like to replace a by a cos nϑ, ϑ being the angle in cylindrical polar coordinates.
This function is not even continuous at r = 0, therefore we modify a to some function a(r2).

8
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It is easily checked that the number and type of singularities is not changed if a(r2) is a
monotonically decreasing positive function of r, which we assume. So, we have with

f (r, z, ϑ) = z +
4bz(a0(r

2) + a1(r
2)cos(nϑ))

(1 + b(r2 + (z + 1)2))(1 + b(r2 + (z − 1)2))

a smooth function which has a maximum and a minimum, both on the z-axis and 2n saddle
points in the z = 0 plane, provided a0(r

2) + a1(r
2)cos(nϑ) is for all ϑ a monotonically

decreasing positive function with

4a0(0)) >

(
b +

1

b

)2

and a1(r
2)/rn remains bounded at r = 0.
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